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SUMMARY

This paper is concerned with a flexible space robot capable of maneuvering payloads. The

robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding

a payload; the robot is mounted on a rigid platform floating in space. The equations of motion are

nonlinear and of high order. Based on the assumption that the maneuvering motions are one order

of magnitude larger than the elastic vibrations, a perturbation approach permits design of controls

for the two types of motion separately. The rigid-body maneuvering is carried out open loop, but

the elastic motions are controlled closed loop, by means of discrete-time linear quadratic regulator

theory with prescribed degree of stability. A numerical example demonstrates the approach. In the

example, the controls derived by the perturbation approach are applied to the original nonlinear
system and errors are found to be relatively small.

1. INTRODUCTION

A variety of space missions can be carried out effectively by space robots. These missions

include the collection of space debris, recovery of spacecraft stranded in a useless orbit, repair of

malfunctioning spacecraft, construction of a space station in orbit and servicing the space station

while in operation. To maximize the usefulness of the space robot, the manipulator arms should be

reasonably long. On the other hand, because of weight limitations, they must be relatively light.

To satisfy both requirements, the manipulator arms must be highly flexible. Hence, space robots

share some of the dynamics and control technology with articulated space structures.

Robotics has been an active research area for the past few clecades, but applications have been

concerned primarily with industrial robots, which are ground based and tend to be very stiff and

bulky. In contrast, space robots are based on a floating platform and tend to be highly flexible.

Hence, whereas industrial and space robots have a number of things in common, the differences are

significant. More recent investigations have been concerned with flexible industrial robots (Refs.

1-4). On the other hand, some investigations are concerned with space robots consisting of rigid

links (Refs. 5-7). Research on flexible space robots has come to light only recently (Refs. 8,9).
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'['his paper is concerned with a flexible space robot capable of maneuvering payloads. The

robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding

a payload; the robot is mounted on a rigid platform floating in space (Fig. 1). Tile platform

is capable of translations and rotations, tile flexible arms are capable of rotations and elastic
deformations and the end-effector/payload can undergo rotations relative to the connecting flexible

arm. Based on a consistent kinematical synthesis, the motions of one body in the chain take into

consideration the motions of the preceding body in the chain. This permits the derivation of the

equations of motion without the imposition of constraints. The equations of motion are derived by

the Lagrangian approach. The equations are nonlinear and of relatively high order.

Ideally, the maneuvering of payloads should be carried without exciting elastic vibration,

which is not possible in general. However, the elastic motions tend to be small compared to the

rigid-bodv maneuvering motions. Under such circumstances, a perturbation approach permits

separation of the problem into a zero-order problem (in a perturbation theory sense) for the

rigid-body maneuvering of the space robot and a first-order problem for the control of the elastic
motions and the perturbations from the rigid-body motions. The maneuvering can be carried out

open loop, but the elastic and rigid-body pert,rbations are controlled closed loop.

The robot mission consists of carrying a payload over a prescribed trajectory and placing it

in a certain orientation relative to the inertial space. For planar motion, the end-effector/payload

configuration is defined by three variables, two translations and one rotation. At the end of the

mission, the vibration should be damped out, so that the robot can be regarded as rigid at that

time. Still, the rigid robot possesses six degrees of freedom, two translations of the platform and

one rotation of each of the four bodies, including the platform. This implies that a kinematic

redundancy exists. This redundancy is removed in the trajectory planning so as to conserve fuel.

For a given end-effector/payload trajectory, the rigid-body maneuvering configuration of the

robot can be obtained by means of inverse kinematics. Then, the forces and torques required for

the robot trajectory realization are obtained from the zero-order equations by means of inverse

dynamics.

The first-order equations for the elastic motions and the perturbations in the rigid-body

maneuvering motions are linear, but of high order, time-varying and they are subjected to

persistent disturbances. The persistent disturbances are treated by means of feedforward control.

All other disturbances are controlled closed loop, with the feedback controls being designed by

means of discrete-time linear quadratic regulator (LQR) theory with prescribed degree of stability.

A numerical example demonstrates the approach. In the example, the controls derived by the

perturbation approach are applied to the original nonlinear system and the errors in the end-

effector/payload configuration were found to be relatively small during the maneuver and to vanish

soon after the termination of the maneuver.

2. A CONSISTENT KINEMATICAL SYNTHESIS

To describe the motion of the space robot, it is convenient to adopt a consistent kinematical

synthesis whereby the system is regarded as a chain of bodies and the motion of one body is
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definedwith dueconsiderationto the motionof the preceedingbody in the chain.Figure 1 shows
the mathematicalmodelof thespacerobot, consistingof a rigid platform (Body 1), two hinge-
connectedflexiblearms(Bodies2 and 3) and a rigid end-effectorholdingthe payload(Body4).
The variousmotionsare referredto a setof inertial axesand setsof body axesto bedefined
shortly.

The object is to derivethe systemequationsof motion,whichcanbedoneby meansof
Lagrange'sequationsin termsof quasi-coordinates(Ref. 10). Becausein the caseat hand the
motion is planar, it is moreexpedientto usethestandardLagrange'sequations.This requiresthe
kinetic energy,potential energyand virtual work. The kinetic energy,in turn, requiresthe velocity
of a typical point in eachof the bodies.

The positionof a nominalpoint on the platformis givenby

RI = R0+ rl (1)

whereR0 = [X y]T is the position vector of the origin Ox of the body axes xl,yz (Fig. I) relative

to the inertial axes X, Y and in terms of X, Y components and rl = [xl yl] T is the position

vector of the nominal point on the platform relative to the body axes xl,yl and in terms of zl,yl

components. The velocity vector of a point on the platform can be expressed in terms of xl,yl
components as follows:

Vl = Clfto + &lrl (2)

where

C1 = [ cO1 sol
]

__sO 1 CO 1 j (3)

is a matrix of direction cosines between axes Zl,yl, and X, Y, in which sO1 = sinOl, c01 = cos 01,

R0=[x ?it (4)

is the velocity vector of Ol in terms of X, Y components and

0 -b,]{'7)1= 01 0 (5)

The second body is flexible, so that we must resolve the question of body axes. We define the

body axes z2, Y2 as a set of axes with the origin at the hinge 02 and embedded in the undeformed

body such that x2 is tangent to the body at 02 (Fig. 2). Then, we define the motion of axes z2, Y2

as rigid-body motion and measure the elastic motion relative to x2, Y2- Hence, the velocity of a

point in the second body (first flexible arm) in terms of z2, y-q components is

V 2 _.-_C2_IV1 (02) Ar t_-q(g2 q- u-q) -_-1_12rel

=C21_0 + C2_lCblrl (02) + ¢b-q(t"2 + u q) + fl2rel (6)

where C2-1 and C2 are matrices similar to CI, Eq. (3), except that 01 is replaced by 02 -- 01 and

02, respectively, _2 has the same structure as &l but with 02 replacing 01, rl(O-q) = [dl hl] T, r2 =
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[.r2 0] T, u2 = [0 U2]T and fl2,el = [0 h2], in which u2 = u2(x2, t) and/t2 = it2(x2, t) are the elastic

displacement and velocity, respectively.

Using the analogy with the second body, the velocity of a point in the third body (second

flexible arm) in terms of z3, y3 components can be shown to be

V3 =C3-2V2(L_.) + w3(r3 + u3) + U3rel

=C3 + cs_iCOlr (o..)+ cs-2 {co2[r2(L2)+ u2(L2,t)l+ 62re|(L2,t)}

+ w3(r3 + u3) + fl3ret
(7)

The fourth body consists of the end-effector and payload combined, and is treated as rigid.

Following the established pattern, the velocity of a point in the fourth body in terms of z4, y4

components is

V 4 =CI_3V3(L3) + _4r4

=C41_0 + C4-1wlrl(O_.) + C4-2 {w2 [r2(L2) + u_.(L2, t)] + fl2r¢l(L2,t)}

"4- C4-3 {_z [r3(L3) + u3(L3, t)] + l_13rel(L3,/:)} 4- &4r4
(8)

The consistent kinematical synthesis just described permits the formulation of the equations

of motion for the whole system without invoking constraint equations. Such constraint equations

must be used to eliminate redundant coordinates in a formulation in which equations of motion are

derived separately for each body.

3. SPATIAL DISCRETIZATION OF THE FLEXIBLE ARMS

The velocity expressions derived in Sec. 2 involve rigid-body motions depending on time

alone and elastic motions depending on the spatial position and time. Equations of motion

based on such formulations are hybrid, in the sense that the equations for the rigid-body motions

are ordinary differential equations and the ones for the elastic motions are partial differential

equations. Designing maneuvers and controls on the basis of hybrid differential equations is likely

to cause serious difficulties, so that the only viable alternative is to transform the hybrid system

into one consisting of ordinary differential equations alone. This amounts to discretization in space

of the elastic displacements, which can be done by means of series expansions. Assuming that the

flexible arms act as beams in bending, the elastic displacements can be expanded in the series

rti

= i= 2,3 (9)
j=l

where ckij(xi) are admissible functions, often referred to as shape functions, and r/ij(t) are

generalized coordinates; 4'j and r/i are corresponding ni-dimensional vectors (i = 2,3; j =

1,2,...,ni)

The question arises as to the nature of the admissible functions. Clearly, the object is to

approximate the displacements with as few terms in the series as possible. This is not a new
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problemin structural dynamics, and tile very same subject has been investigated recently in

Ref. 11, in which a new class of functions, referred to as quasi-comparison functions, has been

introduced. Quasi-comparison functions are defined as linear combinations of admissible functions

capable of satisfying the boundary conditions of the elastic member. As shown in Fig. 2, the beam

is tangent to axis zi at Oi(i = 2, 3). Hence, the admissible functions must be zero and their slope

must be zero at zi = 0. At zi = Li, the displacement, slope, bending moment and shearing force

are generally nonzero. Quasi-comparison functions are linear combinations of functions possessing

these characteristics. Admissible functions from a single family of functions do not possess the

characteristics, but admissible functions from several suitable families can be combined to obtain

them. In the case at hand, quasi-comparison functions can be obtained in the form of suitable

linear combinations of clamped-free and clamped-clamped shape functions.

4. LAGRANGE'S EQUATIONS

Before we can derive Lagrange's equations, we must produce expressions for the kinetic energy,
potential energy and virtual work. To this end, and following the spatial discretization indicated

by Eqs. (9), we introduce the configuration vector

q(t) = Ix(t) K(t) O,(t)O2(t)03(t) 04(t),T(t) r/T(t)] T

so that the velocity vectors, Eqs. (2), (6)-(8), can be written in the compact form

(10)

Vi = Dig:l, i = 1,2,3,4 (11)

where

cO1 s01 --1Jl 0 ... 0 T]D1 = _s01 cO 1 Zl 0 ... 0 T

s02 d18(02 - 01) - hlC(02 - 01)D2= cO2d,c(o -oi)+hl (o -o1)
-¢r,h o o or oT]

z2 0 0 q_T 0TJ (12)

Then, the kinetic energy is simply

where

vTv,..,-le,..
4

is the mass matrix. Typical entries in tile mass matrix are

(13)

(14)

roll ----rrt, rnl2 ---- 0, m13 ----- --(m 2 + m 3 + m4)(hlc01 + dis01)

................................. , ............
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m22 =re, m23 = --(m2 + rn3 + m4)(hlSOl - dlcO1)

ms8 =/Body 3 ¢3¢rdm3 + m463(L3)¢T(L3)

(15)

in which

' Lm = _ mi, _i = /m dPidmi' i = 2, 3, Si = xidmi, i = 1,2,3,4 (16)
i i

i=1

The potential energy, assumed to be entirely due to bending, has the form

1 L2 _. lf0ts

in which Eli(i = 2, 3) are bending stiffnesses and primes denote spatial derivatives, lVloreover,

K = block - diag[0 K2 Ks] (18)

is the stiffness matrix, where

fO Li tt . TIQ = Elid_i (c_i) dzi, i=2,3 (19)

are stiffness matrices for the flexible arms.

Next, we propose to derive the virtual work expression. To this end, we must specify first the

actuators to be used. There are three actuators acting on the platform, two thrusters Fzl and

Fyl acting in directions aligned with tile body axes and a torquer M1 acting at O1. Three other

torquers M2, Ms and 344 are located at the hinges 02, Oa and 04, respectively, the first acting on

the platform and first arm, the second acting on the first and second arm and the third acting on

the second arm and end-effector. In view of this, the virtual work can be written as follows:

6W =F=I (cosOl6X + sin 016Y') + F_,I (-sinO16X + cosOl6Y) + M1601

+ M26(02 - 0,) + M36,1's + M46¢4 + Ms6 [02 + _b_T (L_/3) rt2]

where 6X, 6Y,... are virtual displacements. Moreover, denoting the angles between the two arms

and between the second arm and the end-effector by

I =0s_
_bs =03 - 02 - Oz21,2=L_ (21)

I = 0,_
_b4 =04 - 03 - Ozs I_.s=L3
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wecanwrite
6_3 -----603 --_02 --_b"T(L2)6.2 , _b 4 ---604 - 603 - _b3r/"(L3)6,h (22)

Inserting Eqs. (22) into Eq. (20), we can express the virtual work in terms of generalized forces

and generalized virtual displacements in the form

6|V = QT6q (23)

where Q = [Fx Fy (91 O2 03 @4 N T NT] T is the generalized force vector, in which

FX =Fxl cos01 - Fvl sin 01, Fy = F_I sin01 + Fyl cos01

6)a =11¢1 - M2, 6)2 = M2 - M3 + 1115+ M6

O3 =M3 - M4 + 1117+ Ms, O4 = M4 (24)

N2 =Mhdp'2( L2/3 ) + M6¢'2(2L2/3) - M3(;b_(L2)

r% =MT¢ (L3/3) + Ms¢, (2L3/3)- M4¢ (L3)

and 6q = [6X 6Y 60_ 602 603 604 6rl T 6rIT] T is the generalized virtual displacement vector.

Equations (24) express the generalized forces and torques in terms of the actual actuator forces

and torques and can be expressed in the compact form

Q = EF

where F = [Fzl Fvl 1141 1112 ... Ms] T is the actual control vector and

E = E(O,)=
cos01 -sin01

sin01 cos01

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 -1 0 0 0 0 0

0 1 -I 0 1 1 0

0 0 1 -1 0 0 1

0 0 0 1 0 0 0

o o -¢2(-) o o_%t-U)

0 0 0 -¢3(L3) 0 0 ¢

is a time-varying coefficient matrix, because 01 varies with time.

Lagrange's equation can be expressed in the general symbolic vector form

d(OT) OT OVd-t 0-_-_qq+-_q =Q

(25)

0

0

0

0

1

0

0

26)

(27)
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Observingthat M = M(q), we can write

-gi o;a]
07" 1.TOM. OV _ Kq

o--4q' 0q

Inserting Eqs. (28) into Eq. (27), we obtain Lagrange's equations in the more explicit form

1 _tTOM_/lift+ M-_ --ffq-q]Ct+Kq=Q

in which

6+2n OM. (:tTOM?S =--q,, -Nq=
j=l i')qj

_tT OM / Oql

(:ITOM / Oq2

;:tr oqlli/ Oq6+ 2n

(28)

(29)

(30)

5. A PERTURBATION APPROACtI TO THE CONTROL DESIGN

Equation (29) represents a high-order system of nonlinear differential equations, and is not

very suitable for control design. Hence, an approach capable of coping with the problems of high-

dimensionality and nonlinearity is highly desirable. Such an approach must be based on the

physics of the problem. Tile ideal maneuver is that in which the robot acts as if its arms were

rigid. In reality, the arms are flexible, so that some elastic vibrations are likely to take place. It

is reasonable to assume, however, that the elastic motions are one order of magnitude smaller

than the maneuvering motions. This permits treatment of the elastic motions as perturbations

on the maneuvering motions. In turn, the elastic perturbations give rise to perturbations in the

"rigid-body" maneuvering motions. This suggests a perturbation approach, whereby the problem

is separated into a zero-order problem for the "rigid-body" maneuvering of the payload and a

first-order problem for the control of the elastic motions and the perturbations in the rigid-body

maneuvering motions. The zero-order problem is nonlinear, albeit of relatively low dimension. It

can be solved independently and the control can be open loop. On the other hand, the first-order

problem is linear, but of relatively high dimension. It is affected by the solution to the zero-order

problem, where the effect is in the form of time-varying coefficients and persistent disturbances.

The control for the first-order problem is to be closed loop.

We consider a first-order perturbation solution characterized by

q=q0+ql, Q=Q0+Q1 (31)

where the subscripts 0 and 1 denote zero-order and first-order quantities, with the zero-order

quantities being one order of magnitude larger than the first-order ones. Inserting Eqs. (31) into

Eq. (29) and separating quantities of different orders of magnitude, we obtain the equation for the

zero-order problem

- _M_ ) el0 = Q0 = EoF0Moqo + (My 1 T (32)
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whereqo = [Xo Yo 01o 0_o03o 04o 0 TOT] T, Qo = [Fxo Fxo Olo 020 O3o O4o0 TOT] Tare

zero-order displacement and generalized control vectors, Eo = E(01o) is the matrix E, Eq. (26),

evaluated at 01 = 01o, Fo = [F_o Fyo Mlo M2o ... Mso] T and

[OM. OM OM ]1M0=M(q0), M,= -_-qlq0 _q2dl0 ... 0q6+2,zdt0 q=q0

Moreover, we obtain the equation for the first-order problem

M0_ll + + M I _ M f ) fil

TT
where q] = IX, Y1 011 021 03, 041 r/T r/3 ] , Q] = [Fx] Fy1 011 G21 031 041 N T NT] T are first-

order displacement and generalized control vectors, Qa = [0 0 0 0 0 0 F_r_FaT]r is a persistent
disturbance vector and

[ OM .. 03t .. 031
]1M,

6+.o. OM

M'= _ -_qj iq=qoqOi (35b)
j=l

6+2n 6+2n 02M

Iq qoqlkOOjfiO (35e)/_/ovql = E Z OqjOqk =
j=l k=l

6+2n

02M I q]kdto (35d)M'_,ql = dl0T _ OqOqk q=qo
k=l

From Eqs. (25) and (26), however, we can write

Q1 = EoF1 + EIFo = EoF1 + F_ql (36)

where E1 = [0E/001101 = 0to]011. Moreover, the matrix F_ has the entries

F_11 = - (F_10 sin 010 + Fy]0 cos 010)

F_21 =Fzl0 cos 01o - FuI0 sin 010 (37)

F_i j =0, i=3,4,...,6+n2+n3; j=2,3,...,6+n2+n3

In view of this, the equation for the first-order problem can be rewritten as

1 i
Mo_tl + (M,, + M' - MT)(II + (M_, + M,,_, - -_M'_,v + I( - F_)qI = EoFI + Qd (38)

(33a, b)

6. TRAJECTORY PLANNING

The mission consists of delivering the payload to a certain point in space and placing it

in a certain orientation. For planar motion, the final payload configuration is defined by three

variables, two translations and one rotation. The trajectory planning, designed to realize this
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final configuration, will be carried out as if the robot system were rigid, with the expectation that
all elastic motions and perturbations in the rigid-body maneuvering motions will be annihilated

by the end of the maneuver. The rigid-body motion of the robot is described by the zero-order

problem and it consists of six components, two translations of the platform and one rotation
of each of the four bodies. This implies that a kinematical redundancy exists, as there is an

infinity of ways a six-dimensional configuration can generate a three-dimensional trajectory.

This redundancy can be removed by controlling three of the configuration variables, such as the

translations and rotation of the platform, so as to conserve fuel. Under these circumstances, the

rigid space robot can be treated as a nonredundant manipulator.

Next, we denote the end-effector configuration by XE, so that from kinematics we can write

XE = f(q0) (39)

where f is a three-dimensional vector function. From differential kinematics,

XE = J(q0)ct0

we have

(40)

where
J(q0) = [Of/Oqo]

is the 3 x 6 Jacobian matrix. Introducing the notation

(41)

(42)

where
qs = IX0 ]do 010] T , qM = [020 030 040]T

are the controlled platform configuration vector and the open-loop controlled manipulator

configuration vector, and partitioning the Jacobian matrix accordingly, or

(43a, b)

J= [Js i JM] (44)

Eq. (40) can be rewritten as
XE = Jsqs + JM¢tM (45)

Then, on the assumption that Cls is determined so as to minimize the fuel consumption, and for a

given end-effector trajectory XE, we can determine the manipulator velocity vector from

elm = JM 1 (XE- Jscts) (46)

The end-effector trajectory was taken in the form of a sinusoidal function so as to prevent excessive

vibration. Finally, with q0 given, we can obtain the required open-loop control F0 by inverse

dynamics, which amounts to using Eq. (32).
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7. FEEDBACK CONTROL OF THE ELASTIC MOTIONS AND RIGID-BODY PERTURBATIONS

The elastic motions and the perturbations in the rigid-body maneuvering motions are governed

by the equation defining the first-order problem, Eq. (38). The persistent disturbances are

controlled open loop and all other disturbances are controlled closed loop. To this end, we express
the control vector in the form

F1 = Flo +Flc (47)

where the subscripts o and c indicate open loop and closed loop, respectively. Recognizing that E0
is a rectangular matrix, the open-loop control can be written as

in which

is the psuedo-inverse of Eo.

Flo = -EtoQd (48)

_-(E[Eo)-'Eo (49)

For tile closed-loop control, we consider a linear quadratic regulator (LQR), which requires

recasting the equations of motion in state form. Adjoining the identity ell = c11, the state

equations can be expressed as

_:(t) = A(t)x(t) + B(t)Eouc(t) + B(t)Dd(t) (50)

where x = [qT _tT]T is the state vector, u_ =FI¢ is the control vector, d = Qa is the disturbance
vector and

[ 0 , ]_ 1 tA = _Mo_,(M_+ M_. _M_ + K- r_) -M_-_(M° + M'- Mr) (51_)

[ 0 1 ] D (I E0B= E_)

are coefficient matrices. It should be noted here that, if the matrix E0 is not square, the matrix

D is not zero, so that the open-loop control does not annihilate the persistent disturbances

completely. As the number of actuator approaches the number of degrees of freedom of the system,

the matrix E0 tends to become square. When the number of actuators coincides with the number

of degrees of freedom the matrix E0 is square, in which case the pseudo-inverse becomes an exact
inverse and the matrix D reduces to zero.

The state equations, Eq. (50), possess time-varying coefficients and are subject to residual

persistent disturbances. Due to difficulties in treating such systems in continuous time, we propose

to discretize the state equations in time. Following the usual steps (Ref. 12), the state equations in
discrete time can be shown to be

where

xk+l = Ckxk + FkEot_Uck + FkDkdk, k = 0, I,...

xk =x(kT), u,k = u_(kT), dk = d(kT), k=0,1,...

¢k =exp AuT, Fk = (exp Aj, T- I)A-_IBk, k = O, I,...

Eok =Eo(kT), D_ = D(kT), k = 0,1,...

(52)

(53)
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in which T is the sampling period. In view of the above discussion, we assume that the effect of

the persistent disturbances has been reduced drastically by the feedforward control, and design the

feedback control in its absence. This design is according to a discrete-time LQR with prescribed

degree of stability. To this end, we consider the performance measure

N-1
TJ = xT,pN× + Z + (54)

k=0

where PN and Qk are symmetric positive semidefinite matrices, Rk is a symmetric positive definite

matrix, a is a nonnegative constant defining the degree of stability and NT is the final sampling

time.

The optimization process using the performance measure given by Eq. (54) can be reduced to

a standard discrete-time LQR form by means of the transformation

:xk = e_kxk, tick = e°&Uck, PN = e-_'aN pN (55a, b, e)

Multiplying Eqs. (52) through by eC'(k+l) using Eqs. (55a,b) and ignoring the small perturbing

term, we obtain the new state equations

z_k+t = e_' (_k_k + FkEokfiCk), k = 0,1,...,N - 1 (56)

Similarly, inserting Eqs. (55) into Eq. (54), we obtain the new performance measure

N-1
^T Aj = + E + (57)

k=O

It can be shown (Ref. 12) that the optimal control law has the form

tick = Gk2k, k = 0, 1,...,N- 1 (58)

where Gk are gain matrices obtained from the discrete-time Riccati equations

2_ T T " E -1 2a T T
= RN-i) e E 0 N_iFN_iPN+I-i_N-i,GN-i - (e E ON_iFN_iPN+I-iFN-i oN-i+

i = 1,2,... ,N;P = e-2aNpN (59a)

T . FIv_IEo,N-iGN-i),PN-i =e2a (_N-i + FN-iEo,N-iGN-i) PN+I-i (¢N-i +

+ GTIv_iRN_iGN-i + QN-i, i = 1,2,... ,N;Plv = e-2°_P_ (590

Equations (59a) and (59b) are evaluated alternately for GN-1, P1_-1, GN-2, Ply-2,..., Go, given

the final value of PN.

Inserting the control law, Eqs. (58), into Eqs. (56), we obtain the closed-loop transformed

state equations

_k+l = e'_ (_t, + FkE0kGk) z(k, k = 0,1,... (60)
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Then,recallingEq. (55a) andrestoringthe persistentdisturbanceterm, the closed-loopstate
equationsfor theoriginal systemcanbe written in the form

Xk+l = ('bk + FkE0kGk)xk+ FkDkdk, k = 0,1,... (61)

8. NUMERICAL EXAMPLE

The example involves tile flexible space robot shown in Fig. 1. Numerical values for the system
parameters are as follows:

L1 =1 m, dl = 0.5 m, L_ = L3 = 5m, L4 = 1.66m

ml =10 kg, m_ = m3 = lkg, m4 = 0.1 kg

J1 =20 kgm "_, J2 = 3 kgm 2, EI2 = EI3 = 122.28 Nm 2

The quasi-comparison functions for the flexible arm were chosen as a linear combination of

clamped-free and clamped-clamped shape functions. Both families of shape functions have tile
functional form

1

¢i = _ [coshAiz/n - cos,\_xlt, - ai (sinh Jiz/Z - sinAix/Z)],i = 1,2,...,,_

The values of Ai and _ri are given in Table 1. They correspond to two clamped-free and three

clamped-clamped shape functions, for a total of n = 5 for each flexible arm.

The initial and final end-effector positions are defined by

Xi =9.757 m, I_ = 1.914 m, 04f = 0 rad

Xf =5.000 m, Y/= 1.914 m, 04I = 7r/2 rad

and we note that the path from the initial to the final position represents a straight-line

translation, while the orientation undergoes a 90 ° change. In terms of time, the translational and

rotational accelerations represent one-cycle sinusoidal curves.

The maneuver time is tf = 2.5 s. The zero-order actuator forces and torques to carry out the

maneuver are shown in Fig. 3.

The control of the elastic motions and the perturbations in the rigid-body motions was

extended to t = 4 s. Not that for 2.5 s < t < 4 s the system is time-invariant, during which time

the control gains can be regarded as constant. The weighting matrices in the performance measure
are

Qt, = 10I, Rk = I, PN = 10I

The degree of stability constant is c_ = 0.1. Moreover, the samping period is T = 0.01 s and the
number of time increments is N = 350.

Time-lapse plots of the uncontrolled and controlled robot configuration are shown in Figs. 4a

and 4b, respectively, at the instants 0, i, 1.5 and 2.5 s. Figures 5 and 6 show time histories of the

35



errorsin the end-effectorposition. The discrete-timeopen-loopandclosed-looppolesaregivenin
Tables2 and 3. For comparison,Fig. 7 showsthetime history of theerrorsandTable4 givesthe
closed-looppolesfor a = 1.

It should be pointed out that tile actuator dynamics is also included in the formulation and the

numerical results, but the effect turned out to be small.

9. CONCLUSIONS

An orderly kinematic synthesis in conjunction with the Lagrangian approach permits the

derivation of the equations of motion for an articulated multibody system, such as those describing

the dynamical behavior of a flexible space robot, without the imposition of constraints. The

equations are nonlinear and of relatively high order. A perturbation approach permits the

separation of the problem into a zero-order problem (in a perturbation sense) for the rigid-body

maneuvering of the space robot and a first-order problem for the control of the elastic motions and

the perturbations from the rigid-body motions. The robot mission consists of carrying a payload

over a prescribed trajectory and placing it in a cerrtain orientation relative to the inertial space.

This represents the zero-order problem and the control can be carried out open loop. The first-

order equations defining tile first-order problem (in a perturbation sense) are linear, time-varying,

of high-order and subject to persistent disturbances. The persistent disturbances are treated by

means of feedforward control. All other disturbances are controlled closed loop, with the feedback

control being designed by means of discrete-time LQR theory with prescribed degree of stability.

In a numerical example, the controls derived by the perturbation approach are found to work

satisfactorily when applied to the original nonlinear system.

.

.

.
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Table 1. Shape Function Coefficients

i

I

2

3

4

S

_-i al

1.87510407 0.734095514

4.69409113 1.018467319

7.85475744 0.999224497

10.99554073 1.000033553

14.13716839 0.999998550

Table 2. Discrete-Time Open-Loop Poles

NO.

1,2

3,4

5,6

7,8

9,10

11,12

13,14

lS,16 i

Pole Location Mag. No.

-0.840±0.5431 1.000 17,18

-0.778+0.6291 ! 1.000 19,20

-0.700_+0.714i 1.000 21,22

-0.690±0.724i 1.000 23,24

0.586±0.8101 1.000 25,26

0.629__0.7781 1.000 27,28

0.902__.0.431i .000 29,30

0.921+0.390i .000 31,32

Pole Location Mag.

0.991+0.135i 1.000

0.994_+0.107i 1.000

1.000 11.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000
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Table 3. Discrete-Time Closed-Loop Poles

NO,

1,2

3

4

5

6

7,8

9,10

11,12

13,14

15,16

17

Pole Location M_g. No. Pole Location Mag.

•O. 169:b0.$46i 0.572 18,19 0,803 -+O.976x16_i 0.809

0.493xlo "z 0.005 i 20 0.805 0.805

O. 12OxlO "1 O.012 21 0.807 L807

0.t25 0.125 22,23 0.814- -+0.382x102i ).814

0.204 0.204 24,25 0.817 ).817

0.302-_0.1481 0.336 26 0.817 0.817

0.454_+0.493t 0.670 27 0.819 0.819

0.468+O.323i 0.569 28,29 I0.821- +0.366xldz 0.821

0.536_+0.5001 0.733 30 0.822 0.822

0.749d:O.860x1"_ i 0.754 31 0.822 3.822

0.792 0.792 32 0,827 _}.827

Table 4. Discrete-Time Closed-Loop Poles

fora=l

No. Pole Location Mag. No. Pole Location Mag.

1 -O.566 i0.$66 17,18 0.139+O.844x1_Zi 0.139

2.3 -0.160:t_).186i 0.246 i19,20 0,150:!:0.022i 0.152

4,5 -0.109-+0.275i 0.296 21,22 0.187+0.145i 0.236

6.7 0.062-+0-088i ).108 23,24 0.198-+0-288 xl{)_i 0.200

8 -0.177x10 "1 0.018 25 0.251 0.251

9,10 O.779xl(_'J:O.209i 0.209,26,27 0.252_.0.180i 0.310

11.12 0.072+0.088i 0.114 28,29 0.279_+0.490i i0.564

13.141 0.118_+0.016i 0119 30,31 0.328.'t:0.1481 0.360

15,16_0.132÷0.920x1_1 0.132 32 0.430 0.430

Y

0 X

, L2,

ml,ll

Figure 1. Flexible Space Robot
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Figure 3. Zero-Order Forces and Torque8

Figure 4b. LQR-Controiled Maneuver
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